Graphs and Genomes

Michael Schatz

Bioinformatics Lecture 3
Quantitative Biology 2012

Dynamic Programming Matrix

Compute the optimal alignment of ABC...XY..N and DEF...UV...M

	$\mathbf{0}$	\mathbf{A}	\mathbf{B}	\mathbf{C}	\ldots	\mathbf{X}	\mathbf{Y}	\ldots	\mathbf{N}
$\mathbf{0}$									
\mathbf{D}									
\mathbf{E}									
\mathbf{F}									
\ldots									
\mathbf{U}									
\mathbf{V}									
\ldots									
\mathbf{M}									

Dynamic Programming Matrix

Compute the optimal alignment of ABC...XY..N and DEF...UV...M

	$\mathbf{0}$	\mathbf{A}	\mathbf{B}	\mathbf{C}	\ldots	\mathbf{X}	\mathbf{Y}	\ldots	\mathbf{N}
$\mathbf{0}$	0	I	2	3		X	X+I		N
\mathbf{D}	$\mathbf{1}$								
\mathbf{E}	2								
\mathbf{F}	3								
\ldots									
\mathbf{U}	U								
\mathbf{V}	$\mathrm{U}+\mathbf{I}$								
\ldots									
\mathbf{M}	M								

Top row and first column are easy: it takes L-edits to transform and empty string into a length L string

Dynamic Programming Matrix

Compute the optimal alignment of "ABC...XY..N" and "DEF...UV...M"

	$\mathbf{0}$	\mathbf{A}	\mathbf{B}	\mathbf{C}	\ldots	\mathbf{X}	\mathbf{Y}	\ldots	\mathbf{N}
$\mathbf{0}$	0	\mathbf{I}	$\mathbf{2}$	3		X	$\mathrm{X}+\mathrm{I}$		\mathbf{N}
\mathbf{D}	$\mathbf{1}$								
\mathbf{E}	2								
\mathbf{F}	3								
\ldots									
\mathbf{U}	U					γ	α		
\mathbf{V}	$\mathrm{U}+\mathrm{I}$					β	Ω		
\ldots									
\mathbf{M}	\mathbf{M}								

$\Omega=\min \langle$	"Up" + 1	$\alpha+1$	Up	Left	Diagonal
	"Left+ + 1	$\beta+1$	ABC...XY-	ABC.... $\mathrm{X}_{\mathbf{Y}}$	ABC... $X \mathbf{Y}$
	"Diagonal" $+0 / \mathrm{l}$		DEF....UV	DEF...UV-	DEF...UV
				β	V

Global Alignment Schematic

Evaluate all NxM cells in $\mathrm{O}(\mathrm{NxM})$ time. Value in cell $\mathrm{D}[\mathrm{n}, \mathrm{m}]$ is the edit distance.

D[AGCACACA,ACACACTA $]=2$
AGCACAC-A
$|*|||||*|$
Nathan Edwards
A-CACACTA

Graphs

- Nodes
- People, Proteins, Genes, Neurons, Sequences, Numbers, ...
- Edges
- A is connected to B
- A is related to B
- A regulates B
- A precedes B
- A interacts with B
- A activates B
- ...

Graph Types

Representing Graphs

Adjacency Matrix Good for dense graphs Fast, Fixed storage: N bits								
	A	B	C	D	E	F	C	
A			I	I	I			
B				I	I			
C						I	I	
D						I		
E							I	
F								
G							I	

Adjacency Matrix
Good for dense graphs
Fast, Fixed storage: N^{2} bits

Adjacency List

Good for sparse graphs
Compact storage: 4 bytes/edge
A: C, D, E
D: F
B: D, E
E: F
C: F, G
G:

Edge List
Easy, good if you (mostly) need to iterate through the edges 8 bytes / edge

A,C	B,C		C,F	
A,D	B,D		C,G	
A,E	B,E		D,F	
	E,F	F,G		

Tools
Matlab: http://www.mathworks.com/
Graphviz: http://www.graphviz.org/ Gephi: https://gephi.org/
Cytoscape: http://www.cytoscape.org/
digraph G \{
A->B
$B->C$
A->C
\}
dot -Tpdf -og.pdf g.dot

Network Characteristics

	C. elegans	D. melanogaster	S. cerevisiae
\# Nodes	2646	7464	4965
\# Edges	4037	22831	17536
Avg. / Max Degree	3.0 / 187	6.1 / 178	7.0 / 283
\# Components	109	66	32
Largest Component	2386	7335	4906
Diameter	14	12	11
Avg. Shortest Path	4.8	4.4	4.1
Data Sources	2H	2x2H, TAP-MS	$8 \times 2 \mathrm{H}, 2 \times \mathrm{TAP}, \mathrm{SUS}$
Degree Distributions			

Small World: Avg. Shortest Path between nodes is small
Scale Free: Power law distribution of degree - preferential attachment

Network Motifs

- Network Motif
- Simple graph of connections
- Exhaustively enumerate all possible I, 2, 3, ... k node motifs
- Statistical Significance
- Compare frequency of a particular network motif in a real network as compared to a randomized network
- Certain motifs are "characteristic features" of the network

Network	Nodes	Edges	$N_{\text {real }} N_{\text {rand }} \pm$ SD	Z score	$N_{\text {real }} \quad N_{\text {rand }} \pm$ SD	Z score	$N_{\text {real }} \quad N_{\text {rand }} \pm$ SD	Z score
Gene regulation (transcription)				Feedforward loop	${\underset{z}{z}}_{x}^{x}$	Bi-fan		
E. coli S. cerevisiae*	$\begin{aligned} & 424 \\ & 685 \\ & \hline \end{aligned}$	$\begin{array}{r} 519 \\ 1,052 \\ \hline \end{array}$	$\begin{array}{rr} 40 & 7 \pm 3 \\ 70 & 11 \pm 4 \\ \hline \end{array}$	$\begin{aligned} & 10 \\ & 14 \end{aligned}$	$\begin{array}{rr} 203 & 47 \pm 12 \\ 1812 & 300 \pm 40 \\ \hline \end{array}$	$\begin{array}{r} 13 \\ 41 \\ \hline \end{array}$		
Neurons			$\left[\begin{array}{l} \mathrm{X} \\ \mathrm{~V} \\ \mathrm{Y} \\ \mathrm{~V} \\ \mathrm{Z} \end{array}\right.$	Feedforward loop		Bi-fan	$\begin{aligned} & k_{w}^{x} v^{y} \\ & v^{z} \end{aligned}$	Biparallel
C. elegans \dagger	252	509	$125 \quad 90 \pm 10$	3.7	$127 \quad 55 \pm 13$	5.3	$227 \quad 35 \pm 10$	20
Food webs			$\begin{aligned} & \hline \mathbf{X} \\ & \mathbf{V} \\ & \mathbf{Y} \\ & \mathbf{V} \\ & \mathbf{z} \end{aligned}$	Three chain	$\begin{gathered} k_{w}^{x} v \\ Y_{V}^{z} \end{gathered}$	Biparallel		
Little Rock	92	984	$3219 \quad 3120 \pm 50$	2.1	$7295 \quad 2220 \pm 210$	25		
Ythan	83	391	$1182 \quad 1020 \pm 20$	7.2	$1357 \quad 230 \pm 50$	23		
St. Martin	42	205	$469 \quad 450 \pm 10$	NS	$382 \quad 130 \pm 20$	12		
Chesapeake	31	67	$80 \quad 82 \pm 4$	NS	$26 \quad 5 \pm 2$	8		
Coachella	29	243	$279 \quad 235 \pm 12$	3.6	$181 \quad 80 \pm 20$	5		
Skipwith	25	189	$184 \quad 150 \pm 7$	5.5	$397 \quad 80 \pm 25$	13		
B. Brook	25	104	$181 \quad 130 \pm 7$	7.4	$267 \quad 30 \pm 7$	32		
Electronic circuits (forward logic chips)			$\left[\begin{array}{l}\text { X } \\ \underset{\sim}{\mathrm{V}} \\ \stackrel{\rightharpoonup}{V} \\ > \\ \mathrm{Z}\end{array}\right.$	Feed- forward loop	V_{z}^{x}	Bi-fan		Biparallel
s15850	10,383	14,240	$424 \quad 2 \pm 2$	285	$1040 \quad 1 \pm 1$	1200	$480 \quad 2 \pm 1$	335
s38584	20,717	34,204	$413 \quad 10 \pm 3$	120	$1739 \quad 6 \pm 2$	800	$711 \quad 9 \pm 2$	320
s38417	23,843	33,661	6123 ± 2	400	2404 1 ± 1	2550	$531 \quad 2 \pm 2$	340
s9234	5,844	8,197	$211 \quad 2 \pm 1$	140	7541 ± 1	1050	2091 ± 1	200
s13207	8,651	11,831	$403 \quad 2 \pm 1$	225	$4445 \quad 1 \pm 1$	4950	$264 \quad 2 \pm 1$	200
Electronic circuits(digital fractional multipliers)			$\underset{\mathrm{x} \longleftarrow}{\prod_{\mathrm{z}}^{\mathrm{x}} \searrow}$	Three node feedback loop		Bi-fan		Fournode feedback loop
s208	122	189	$10 \quad 1 \pm 1$	9	$4 \quad 1 \pm 1$	3.8	$5 \quad 1 \pm 1$,
s420	252	399	$20 \quad 1 \pm 1$	18	$10 \quad 1 \pm 1$	10	$11 \quad 1 \pm 1$	11
8838 \ddagger	512	819	$40 \quad 1 \pm 1$	38	$22 \quad 1 \pm 1$	20	$23 \quad 1 \pm 1$	25
World Wide Web			$\left[\begin{array}{l} x \\ \hat{\lambda} \\ \vdots \\ \vdots \\ z \end{array}\right.$	Feedback with two mutual dyads		Fully connected triad		Uplinked mutual dyad
nd.edu§	325,729	1.46e6	$1.1 \mathrm{e} 5 \quad 2 \mathrm{e} 3 \pm 1 \mathrm{e} 2$	800	$6.8 \mathrm{e} 6 \quad 5 \mathrm{e} 4 \pm 4 \mathrm{e} 2$	15,000	$1.2 \mathrm{e} 6 \quad 1 \mathrm{e} 4 \pm 2 \mathrm{e} 2$	5000

Network Motifs: Simple Building Blocks of Complex Networks
Milo et al (2002) Science. 298:824-827

Modularity

- Community structure
- Densely connected groups of vertices, with only sparser connections between groups
- Reveals the structure of large-scale network data sets
- Modularity
- The number of edges falling within groups minus the expected number in an equivalent network with edges placed at random
- Larger positive values => Stronger community structure
- Optimal assignment determined by computing the eigenvector of the modularity matrix
Modularity and community structure in networks.
Newman ME (2006) PNAS. I03(23) 8577-8582

$$
\begin{aligned}
& \qquad Q=\frac{1}{4 m} \sum_{i j} \underbrace{\left(A_{i j}-\right.}_{\uparrow}-\frac{k_{i} k_{j}}{2 m}) \\
& \begin{array}{c}
\uparrow \\
\begin{array}{c}
\text { Normalization } \\
\text { factor }
\end{array} \\
\begin{array}{c}
\text { Adjacency } \\
\text { matrix }
\end{array} \\
\begin{array}{c}
\text { Indicates } \\
\text { same group }
\end{array}
\end{array}
\end{aligned}
$$

Random Prob. (product of degrees)

Kevin Bacon and Bipartite Graphs

Find the shortest path from
Kevin Bacon
to
Jason Lee

Breadth First Search:
4 hops
Bacon Distance:
2

[How many nodes will it visit?]
[What's the running time?]
[What happens for disconnected components?]

BFS	
BFS(start, stop) // initialize all nodes dist $=-$ I start.dist $=0$ list.addEnd(start)	$\underline{0}$
	A, B, C
while (!list.empty())	B,C,D,E
cur = list.begin()	
if (cur $==$ stop)	
else E,F,L,G,H,I	
foreach child in cur.children E,L,G,H,I,J	
if (child.dist $==-1$) L	
child.dist = cur.dist+1 \quad G, H, I, J, X, Olist. $a d d E n d$ (child)	
list.addEnd(child)	$\underline{H}, \mathrm{I}, \mathrm{J}, \mathrm{X}, \mathrm{O}$
	I,J,X,O,M
D:2)-(1:3	J,X,O,M
	$\underline{X}, \mathrm{O}, \mathrm{M}, \mathrm{N}$
	$\underline{\mathrm{O}}, \mathrm{M}, \mathrm{N}$
-B:D- $F: 2-8$	M, N
O:3	N

DFS

Eulerian Cycle Problem

- Seven Bridges of Königsberg
- Find a cycle that visits every edge exactly once

[Can you find the cycle?]
bioalgorithms.info

Euler Theorem

- A graph is balanced if for every vertex the number of incoming edges equals to the number of outgoing edges:

$$
\operatorname{in}(v)=o u t(v)
$$

- Theorem: A connected graph is Eulerian if and only if each of its vertices is balanced.

bioalgorithms.info

Algorithm for Constructing an Eulerian Cycle

a. Start with an arbitrary vertex v and form an arbitrary cycle with unused edges until a dead end is reached. Since the graph is Eulerian this dead end is necessarily the starting point, i.e., vertex v.

bioalgorithms.info

Algorithm for Constructing an Eulerian Cycle (cont' d)

b. If cycle from (a) above is not an Eulerian cycle, it must contain a vertex w, which has untraversed edges.
Perform step (a) again, using vertex w as the starting point. Once again, we will end up in the starting vertex
w.

(b)
bioalgorithms.info

Algorithm for Constructing an Eulerian Cycle (cont' d)

c. Combine the cycles from (a) and (b) into
a single cycle and iterate step (b).

(c)

Counting Eulerian Cycles

Generally an exponential number of compatible sequences

- Value computed by application of the BEST theorem (Hutchinson, 1975)

$$
\begin{aligned}
& \mathcal{W}(G, t)=(\operatorname{det} L)\left\{\prod_{u \in V}\left(r_{u}-1\right)!\right\}\left\{\prod_{(u, v) \in E} a_{u v}!\right\}^{-1} \\
& \mathrm{~L}=n \times n \text { matrix with } r_{u}-a_{u u} \text { along the diagonal and }-a_{u v} \text { in entry uv } \\
& r_{u}=\mathrm{d}^{+}(u)+l \text { if } u=t \text {, or } \mathrm{d}^{+}(u) \text { otherwise } \\
& a_{u v}=\text { multiplicity of edge from } u \text { to } v
\end{aligned}
$$

Assembly Complexity of Prokaryotic Genomes using Short Reads. Kingsford C, Schatz MC, Pop M (20I0) BMC Bioinformatics.

BFS and TSP

- BFS computes the shortest path between a pair of nodes in $\mathrm{O}(|\mathrm{E}|)=\mathrm{O}\left(|\mathrm{N}|^{2}\right)$
- What if we wanted to compute the shortest path visiting every node once?
- Traveling Salesman Problem

$$
\begin{aligned}
& \text { ABDCA: } 4+2+5+3=14 \\
& \text { ACDBA: } 3+5+2+4=14^{*} \\
& \text { ABCDA: } 4+1+5+1=11 \\
& \text { ADCBA: } 1+5+1+4=11 * \\
& \text { ACBDA: } 3+1+2+1=7 \\
& \text { ADBCA: } 1+2+1+3=7 *
\end{aligned}
$$

Greedy Search

Greedy Search

Greedy Search

cur=graph.randNode()
while (!done)

Greedy: \quad ABDCA $=5+8+10+50=73$
Optimal: $A C B D A=5+11+10+12=38$

Greedy finds the global optimum only when
I. Greedy Choice: Local is correct without reconsideration
2. Optimal Substructure: Problem can be split into subproblems

Optimal Greedy: Making change with the fewest number of coins

TSP Complexity

- No fast solution
- Knowing optimal tour through n cities doesn't seem to help much for $n+1$ cities
[How many possible tours for n cities?]

- Extensive searching is the only provably correct algorithm
- Brute Force: O(n!)
- ~ 20 cities max
- $20!=2.4 \times 10^{18}$

Branch-and-Bound

- Abort on suboptimal solutions as soon as possible
- ADBECA $=1+2+2+2+3=10$
$-\mathrm{ABDE}=4+2+30>10$
- ADE $=1+30>10$
- AED $=1+30>10$

- Performance Heuristic
- Always gives the optimal answer
- Doesn't always help performance, but often does
- Current TSP record holder:
- 85,900 cities
[When not?]
- $85900!=10^{386526}$

TSP and NP-complete

- TSP is one of many extremely hard problems of the class NP-complete
- Extensive searching is the only way to find an exact solution
- Often have to settle for approx. solution

- WARNING: Many biological problems are in this class
- Find a tour the visits every node once (Genome Assembly)
- Find the smallest set of vertices covering the edges (Essential Genes)
- Find the largest clique in the graph (Protein Complexes)
- Find the highest mutual information encoding scheme (Neurobiology)
- Find the best set of moves in tetris
- ...
- http://en.wikipedia.org/wiki/List_of_NP-complete_problems

Shortest Common Superstring

Given: $S=\left\{\mathrm{s}_{1}, \ldots, \mathrm{~s}_{n}\right\}$
Problem: Find minimal length superstring of S

$$
\begin{array}{cll}
& \mathrm{s}_{1,} \mathrm{~s}_{2}, \mathrm{~s}_{3}=\text { CACCCGGGTGCCACC } & 15 \\
\mathrm{~s}_{1} \mathrm{CACCC} & \mathrm{~s}_{1}, \mathrm{~s}_{3}, \mathrm{~s}_{2}=\text { CACCCACCGGGTGC14 } & \\
\mathrm{s}_{2} \text { CCGGGTGC } & \mathrm{s}_{2}, \mathrm{~s}_{1}, \mathrm{~s}_{3}=\text { CCGGGTGCACCCACC } & 15 \\
\mathrm{~s}_{3} \mathrm{CCACC} & \mathrm{~s}_{2}, \mathrm{~s}_{3}, \mathrm{~s}_{1}=\text { CCGGGTGCCACCC } & 13 \\
& \mathrm{~s}_{3}, \mathrm{~s}_{1}, \mathrm{~s}_{2}=\text { CCACCCGGGTGC } & 12 \\
& \mathrm{~s}_{3}, \mathrm{~s}_{2}, \mathrm{~s}_{1}=\text { CCACCGGGTGCACCC } & 15
\end{array}
$$

NP-Complete by reduction from Vertex-Cover and later Directed-Hamiltonian-Path

Break

Milestones in Genome Assembly

1977. Sanger et al. ${ }^{\text {st }}$ Complete Organism 5375 bp

2000. Myers et al.
$\|^{\text {st }}$ Large WGS Assembly.
Celera Assembler. I 16 Mbp

1995. Fleischmann et al.
$\|^{\text {st }}$ Free Living Organism TIGR Assembler. I.8Mbp

200 I.Venter et al., IHGSC Human Genome
Celera Assembler/GigaAssembler. 2.9 Gbp

1998. C.elegans SC ${ }^{\text {st }}$ Multicellular Organism BAC-by-BAC Phrap. 97Mbp

2010. Li et al.
$\|^{\text {st }}$ Large SGS Assembly.
SOAPdenovo 2.2 Gbp

Like Dickens, we must computationally reconstruct a genome from short fragments

Assembly Applications

- Novel genomes

- Metagenomes

- Sequencing assays
- Structural variations
- Transcript assembly

Assembling a Genome

I. Shear \& Sequence DNA

2. Construct assembly graph from overlapping reads

GGATGCGCGACACGTCGCATATCCGGT...
3. Simplify assembly graph

4. Detangle graph with long reads, mates, and other links

Why are genomes hard to assemble?

I. Biological:

- (Very) High ploidy, heterozygosity, repeat content

2. Sequencing:

- (Very) large genomes, imperfect sequencing

3. Computational:

- (Very) Large genomes, complex structure

4. Accuracy:

- (Very) Hard to assess correctness

Ingredients for a good assembly

High coverage is required

- Oversample the genome to ensure every base is sequenced with long overlaps between reads
- Biased coverage will also fragment assembly

Reads \& mates must be longer than the repeats

- \quad Short reads will have false overlaps forming hairball assembly graphs
- With long enough reads, assemble entire chromosomes into contigs

Quality

Errors obscure overlaps

- Reads are assembled by finding kmers shared in pair of reads
- High error rate requires very short seeds, increasing complexity and forming assembly hairballs

Current challenges in de novo plant genome sequencing and assembly Schatz MC,Witkowski, McCombie,WR (20I2) Genome Biology. I2:243

Illumina Sequencing by Synthesis

1. Prepare
2. Attach

3. Image

4. Basecall

Metzker (20I0) Nature Reviews Genetics I I:3I-46

Paired-end and Mate-pairs

Paired-end sequencing

- Read one end of the molecule, flip, and read the other end
- Generate pair of reads separated by up to 500bp with inward orientation 300bp

Mate-pair sequencing

- Circularize long molecules (I-IOkbp), shear into fragments, \& sequence
- Mata foilunocomonto chont paimad and mond

10kbp

2x100 @ ~10kbp (outies)

2x100 @ 300bp (innies)

Typical contig coverage

Imagine raindrops on a sidewalk

Balls in Bins Ix

Balls in Bins
balls in bin
Total balls: $\mathbf{1 0 0 0}$

Balls in Bins $2 x$

Balls in Bins
balls in bin
Total balls: 2000

Balls in Bins 3x

Balls in Bins
Total balls: $\mathbf{3 0 0 0}$

Balls in Bins 4x

Balls in Bins
Total balls: $\mathbf{4 0 0 0}$

Balls in Bins 5x

Balls in Bins
Total balls: 5000

Balls in Bins 6x

Balls in Bins
Total balls: $\mathbf{6 0 0 0}$

Balls in Bins 7x

Balls in Bins
Total balls: 7000

Balls in Bins $8 x$

Balls in Bins
Total balls: $\mathbf{8 0 0 0}$

Coverage and Read Length

Idealized Lander-Waterman model

- Reads start at perfectly random positions
- Contig length is a function of coverage and read length
- Short reads require much higher coverage to reach same expected contig length
- Need even high coverage for higher ploidy, sequencing errors, sequencing biases
- Recommend I00x coverage

Lander Waterman Expected Contig Length vs Coverage

Assembly of Large Genomes using Second Generation Sequencing Schatz MC, Delcher AL, Salzberg SL (20I0) Genome Research. 20:1165-II73.

de Bruijn Graph Construction

- $\mathrm{D}_{\mathrm{k}}=(\mathrm{V}, \mathrm{E})$
- $V=$ All length- k subfragments $(k<l)$
- $E=$ Directed edges between consecutive subfragments
- Nodes overlap by k-I words

Original Fragment

It was the best of

Directed Edge

- Locally constructed graph reveals the global sequence structure
- Overlaps between sequences implicitly computed
de Bruijn, 1946
Idury and Waterman, 1995
Pevzner, Tang, Waterman, 2001

de Bruijn Graph Assembly

de Bruijn Graph Assembly

Two Paradigms for Assembly

Assembly of Large Genomes using Second Generation Sequencing Schatz MC, Delcher AL, Salzberg SL (20I0) Genome Research. 20:I I65-II73.

Overlap between two sequences

The assembler screens merges based on:

- length of overlap
- \% identity in overlap region
- maximum overhang size.

Unitigging / Unipathing

- After simplification and correction, compress graph down to its non-branching initial contigs
- Aka "unitigs","unipaths"
- Unitigs end because of (I) lack of coverage, (2) errors, and (3) repeats

Errors in the graph

(Chaisson, 2009)

Repeats and Read Length

- Explore the relationship between read length and contig N50 size
- Idealized assembly of read lengths: 25, 35,50, I00, 250, 500, 1000
- Contig/Read length relationship depends on specific repeat composition

Assembly Complexity of Prokaryotic Genomes using Short Reads. Kingsford C, Schatz MC, Pop M (20I0) BMC Bioinformatics. II:2I.

Repetitive regions

Repeat Type	Definition / Example	Prevalence
Low-complexity DNA / Microsatellites	$\left(\mathrm{b}_{1} \mathrm{~b}_{2} \ldots \mathrm{~b}_{\mathrm{k}}\right)^{\mathrm{N}}$ where $\mathrm{I} \leq \mathrm{k} \leq 6$ CACACACACACACACACACA	2%
SINEs (Short Interspersed Nuclear Elements)	Alu sequence $(\sim 280 \mathrm{bp})$ Mariner elements $(\sim 80 \mathrm{bp})$	13%
LINEs (Long Interspersed Nuclear Elements)	$\sim 500-5,000 \mathrm{bp}$	21%
LTR (long terminal repeat) retrotransposons	Tyl-copia,Ty3-gypsy, Pao-BEL $(\sim 100-5,000 \mathrm{bp})$	8%
Other DNA transposons	3%	
Gene families \& segmental duplications		4%

- Over 50% of mammalian genomes are repetitive
- Large plant genomes tend to be even worse
- Wheat: 16 Gbp; Pine: 24 Gbp

Repeats and Coverage Statistics

- If n reads are a uniform random sample of the genome of length G, we expect $k=n \Delta / G$ reads to start in a region of length Δ.
- If we see many more reads than k (if the arrival rate is $>A$), it is likely to be a collapsed repeat
- Requires an accurate genome size estimate
$\operatorname{Pr}(X-$ copy $)=\binom{n}{k}\left(\frac{X \Delta}{G}\right)^{k}\left(\frac{G-X \Delta}{G}\right)^{n-k}$

$$
A(\Delta, k)=\ln \left(\frac{\operatorname{Pr}(1-\text { copy })}{\operatorname{Pr}(2-\text { copy })}\right)=\ln \left(\frac{\frac{(\Delta n / G)^{k}}{k!} e^{\frac{-\Delta n}{G}}}{\frac{(2 \Delta n / G)^{k}}{k!} e^{\frac{-2 \Delta n}{G}}}\right)=\frac{n \Delta}{G}-k \ln 2
$$

Initial Scaffolding

Scaffold

Create a initial scaffold of unique unitigs (U-Unitigs) whose A-stat > 5. Also recruit borderline unitigs whose A-stat is >2 and have consistent mates with the U-Unitigs.

Repeat Resolution

Scaffold

Place rocks (A-stat > 0 with multiple consistent mates), and stones (single mate and overlap path with placed objects) into the gaps. Pebbles, unitigs lackings mates, are no longer incorporated regardless of overlap qualities.

Derive Consensus Sequence

TAGATTACACAGATTACTGACTTGATGGCGTAA CTA

Derive multiple alignment from pairwise read alignments

Derive each consensus base by weighted voting

N50 size

Def: 50% of the genome is in contigs larger than N50

Example: I Mbp genome 50\%

N50 size $=30 \mathrm{kbp}$
$(300 k+100 k+45 k+45 k+30 k=520 k>=500 k b p)$
Note:
N50 values are only meaningful to compare when base genome size is the same in all cases

Assembly Algorithms

ALLPATHS-LG	SOAPdenovo	Celera Assembler
Broad's assembler (Gnerre et al. 20II)	 BGI's assembler (Li et al. 20IO)	 JCVI's assembler (Miller et al. 2008)
De bruijn graph Short + PacBio (patching)	De bruijn graph Short reads	Overlap graph Medium + Long reads
Easy to run if you have compatible libraries	Most flexible, but requires a lot of tuning	Supports Illumina/454/PacBio Hybrid assemblies
http://www.broadinstitute.org/ software/allpaths-Ig/blog/	http://soap.genomics.org.cn/ soapdenovo.htm	http://wgs-assembler.sf.net

Assembly Validation

Automatically scan an assembly to locate misassembly signatures for further analysis and correction

Assembly-validation pipeline
I. Evaluate Mate Pairs \& Libraries
2. Evaluate Read Alignments
3. Evaluate Read Breakpoints
4. Analyze Depth of Coverage

Genome Assembly forensics: finding the elusive mis-assembly. Phillippy, AM, Schatz, MC, Pop, M. (2008) Genome Biology 9:R55.

Mate-Happiness: asmQC

- Excision: Skip reads between flanking repeats
- Truth

- Misassembly: Compressed Mates, Missing Mates

C/E Statistic

- The presence of individual compressed or expanded mates is rare but expected.
- Do the inserts spanning a given position differ from the rest of the library?
- Flag large differences as potential misassemblies
- Even if each individual mate is "happy"
- Compute the statistic at all positions
- (Local Mean - Global Mean) / Scaling Factor
- Introduced by Jim Yorke's group at UMD

Sampling the Genome

C/E-Statistic: Expansion

8 inserts: $3.2 \mathrm{~kb}-6 \mathrm{~kb}$
Local Mean: 4461
C/E Stat: $\frac{(4461-4000)}{(400 / \sqrt{ } 8)}=+3.26$
C/E Stat ≥ 3.0 indicates Expansion

C/E-Statistic: Compression

8 inserts: 3.2 kb-4.8kb
Local Mean: 3488
C/E Stat: $\frac{(3488-4000)}{(400 / \sqrt{ } 8)}=-3.62$
C/E Stat ≤-3.0 indicates
Compression

Forensics

Assembly Forensics

Truth:

Mis-assembled:

Hawkeye \& AMOS:Visualizing and assessing the quality of genome assemblies Schatz, M.C. et al. (201I) Briefings in Bioinformatics. In Press.

Assembly Summary

Assembly quality depends on
I. Coverage: low coverage is mathematically hopeless
2. Repeat composition: high repeat content is challenging
3. Read length: longer reads help resolve repeats
4. Error rate: errors reduce coverage, obscure true overlaps

- Assembly is a hierarchical, starting from individual reads, build high confidence contigs/unitigs, incorporate the mates to build scaffolds
- Extensive error correction is the key to getting the best assembly possible from a given data set
- Watch out for collapsed repeats \& other misassemblies
- Globally/Locally reassemble data from scratch with better parameters \& stitch the 2 assemblies together

Thank You

http://schatzlab.cshl.edu/teaching/ @mike_schatz

