Graphs and Genomes Michael Schatz

Bioinformatics Lecture 3 Quantitative Biology 2012

Dynamic Programming Matrix

Compute the optimal alignment of ABC...XY..N and DEF...UV...M

	0	Α	В	С	•••	X	Y	•••	Ν
0									
D									
E									
F									
••••									
U									
V									
•••									
Μ									

Dynamic Programming Matrix

Compute the optimal alignment of ABC...XY..N and DEF...UV...M

	0	Α	В	С	•••	X	Y	•••	Ν
0	0	I	2	3		X	X+I		Ν
D	I								
E	2								
F	3								
•••									
U	U								
V	U+I								
•••									
Μ	М								

Top row and first column are easy: it takes L-edits to transform and empty string into a length L string

Dynamic Programming Matrix

Compute the optimal alignment of "ABC...XY..N" and "DEF...UV...M"

	0	Α	В	С	•••	X	Y	•••	Ν
0	0	Ι	2	3		X	X+I		Ν
D	Ι								
E	2								
F	3								
•••									
U	U					γ	α		
V	U+I					β <	Ω		
•••									
Μ	М								

$$\Omega = \min \begin{cases} "Up" + I & \alpha + 1 & Up & Left & Diagonal \\ "Left + + I & \beta + 1 & ABC \dots XY & ABC \dots XY & ABC \dots XY \\ "Diagonal" + 0/I & \gamma + 1 & DEF \dots UV & DEF \dots UV - DEF \dots UV \\ & \alpha & \beta & \gamma \end{cases}$$

Global Alignment Schematic

Nathan Edwards

Biological Networks

& FRESS

Figure 5 Putative regulatory elements shared between groups of correlated and anticorrelated genes

- Nodes
 - People, Proteins, Genes, Neurons, Sequences, Numbers, ...
- Edges
 - A is connected to B
 - A is related to B
 - A regulates B
 - A precedes B
 - A interacts with B
 - A activates B

- ...

Graph Types

Representing Graphs

<u>Tools</u> Matlab: <u>http://www.mathworks.com/</u> Graphviz: <u>http://www.graphviz.org/</u> Gephi: <u>https://gephi.org/</u> Cytoscape: <u>http://www.cytoscape.org/</u> digraph G { A->B B->C A->C } dot –Tpdf -og.pdf g.dot

Network Characteristics

	C. elegans	D. melanogaster	S. cerevisiae
# Nodes	2646	7464	4965
# Edges	4037	22831	17536
Avg. / Max Degree	3.0 / 187	6.1 / 178	7.0 / 283
# Components	109	66	32
Largest Component	2386	7335	4906
Diameter	14	12	11
Avg. Shortest Path	4.8	4.4	4.1
Data Sources	2H	2x2H, TAP-MS	8x2H, 2xTAP, SUS
Degree Distributions	some regular to the second sec	Property of the second	100 100 100 100 100 100 100 100

Small World: Avg. Shortest Path between nodes is small **Scale Free**: Power law distribution of degree – preferential attachment

Network Motifs

- Network Motif
 - Simple graph of connections
 - Exhaustively enumerate all possible 1, 2, 3, ... k node motifs
- Statistical Significance
 - Compare frequency of a particular network motif in a real network as compared to a randomized network
- Certain motifs are "characteristic features" of the network

Network	Nodes	Edges	Nreal	$N_{\rm rand} \pm {\rm SD}$	Z score	N _{real}	$N_{\rm rand} \pm {\rm SD}$	Z score	Nreal	$N_{\rm rand} \pm {\rm SD}$	Z score
Gene regulat (transcriptio				X ₩ Y ₩ Z	Feed- forward loop	x	₹ ₩	Bi-fan			
E. coli	424	519	40	7 ± 3	10	203	47 ± 12	13			
S. cerevisiae*	685	1,052	70	11 ± 4	14	1812	300 ± 40	41			
Neurons				X ₩ ¥ ₩ Z	Feed- forward loop	x	₩ ₩	Bi-fan	¥" ¥¥	κ Ν Ν Ν	Bi- parallel
C. elegans†	252	509	125	90 ± 10	3.7	127	55 ± 13	5.3	227	35 ± 10	20
Food webs				X ♥ Y ♥ Z	Three chain	и У Ч	N N Z	Bi- parallel			
Little Rock	92	984	3219	3120 ± 50	2.1	7295	2220 ± 210	25			
Ythan	83	391	1182	1020 ± 20	7.2	1357	230 ± 50	23			
St. Martin	42	205	469	450 ± 10	NS	382	130 ± 20	12			
Chesapeake	31	67	80	82 ± 4	NS	26	5 ± 2	8			
Coachella	29	243	279	235 ± 12	3.6	181	80 ± 20	5			
Skipwith	25	189	184	150 ± 7	5.5	397	80 ± 25	13			
B. Brook	25	104	181	130 ± 7	7.4	267	30 ± 7	32			
Electronic cii (forward logi				X ₩ Y ₩ Z	Feed- forward loop	x	₩ W	Bi-fan	Y Y N		Bi- parallel
s15850	10,383	14,240	424	2 ± 2	285	1040	1 ± 1	1200	480	2 ± 1	335
s38584	20,717	34,204	413	10 ± 3	120	1739	6 ± 2	800	711	9 ± 2	320
s38417	23,843	33,661	612	3 ± 2	400	2404	1 ± 1	2550	531	2 ± 2	340
s9234	5,844	8,197	211	2 ± 1	140	754	1 ± 1	1050	209	1 ± 1	200
s13207	8,651	11,831	403	2 ± 1	225	4445	1±1	4950	264	2 ± 1	200
Electronic ci (digital fracti		ipliers)	/ × ×←	z	Three- node feedback loop	x	₩ W	Bi-fan	x− ↑ z ≤	$\rightarrow Y$ \downarrow $\swarrow W$	Four- node feedbac loop
s208	122	189	10	1±1	9	4	1 ± 1	3.8	5	1 ± 1	5
s420	252	399	20	1 ± 1 1 ± 1	18	10	1 ± 1 1 ± 1	10	11	1 ± 1 1 ± 1	11
s838‡	512	819	40	1±1	38	22	1±1	20	23	1 ± 1	25
World Wide	Web			X ♥Y ♥Z	Feedback with two mutual dyads	$X \leftarrow X$	S → z	Fully connected triad		∧ > z	Uplinke mutual dyad

Network Motifs: Simple Building Blocks of Complex Networks Milo et al (2002) Science. 298:824-827

Modularity

- Community structure
 - Densely connected groups of vertices, with only sparser connections between groups
 - Reveals the structure of large-scale network data sets

- Modularity
 - The number of edges falling within groups minus the expected number in an equivalent network with edges placed at random
 - Larger positive values => Stronger community structure
 - Optimal assignment determined by computing the eigenvector of the modularity matrix

Modularity and community structure in networks. Newman ME (2006) *PNAS*. *103*(23) 8577-8582

Random Prob. (product of degrees)

Kevin Bacon and Bipartite Graphs

BFS

BFS(start, stop) // initialize all nodes dist = - I	<u>0</u>
<pre>start.dist = 0 list.addEnd(start) while (!list.empty()) cur = list.begin()</pre>	<u>A</u> ,B,C <u>B</u> ,C,D,E <u>C</u> ,D,E,F,L
<pre>if (cur == stop) print cur.dist; else foreach child in cur.children if (child.dist == -1) child.dist = cur.dist+1 list.addEnd(child)</pre>	<u>D</u> ,E,F,L,G,H <u>E</u> ,F,L,G,H,I <u>F</u> ,L,G,H,I,J <u>L</u> ,G,H,I,J,X <u>G</u> ,H,I,J,X,O <u>H</u> ,I,J,X,O
$\begin{array}{c} D2 \\ B1 \\ B1 \\ C1 \\ C1 \\ C2 \\ H2 \\ M3 \\ \end{array}$	<u>I</u> ,J,X,O,M <u>J</u> ,X,O,M <u>X</u> ,O,M,N <u>O</u> ,M,N <u>M</u> ,N <u>N</u>

[How many nodes will it visit?]

[What's the running time?]

[What happens for disconnected components?]

BFS

BFS(start, stop)	0
// initialize all nodes dist = - I	_
start.dist = 0	Λ
list.addEnd(start)	<u>A</u> ,
while (!list.empty())	<u>B</u> ,
cur = list.begin()	<u>C</u> ,
if (cur == stop)	
print cur.dist;	<u>D</u> ,
else	<u>E</u> ,
foreach child in cur.children	F,I
if (child.dist == -1)	Ĺ,
child.dist = cur.dist+l	G,
list.addEnd(child)	<u>о</u> , н
	<u> </u>

<u>∪</u> <u>A</u>,B,C <u>B</u>,C,D,E <u>C</u>,D,E,F,L

<u>D</u>,E,F,L,G,H <u>E</u>,F,L,G,H,I <u>F</u>,L,G,H,I,J <u>L</u>,G,H,I,J,X <u>G</u>,H,I,J,X,O <u>H</u>,I,J,X,O

<u>I</u>,J,X,O,M <u>J</u>,X,O,M <u>X</u>,O,M,N <u>O</u>,M,N <u>M</u>,N

DFS

DFS(start, stop)
// initialize all nodes dist = -1
start.dist = 0
list.addEnd(start)
while (!list.empty())
 cur = list.end()
 if (cur == stop)
 print cur.dist;
 else
 foreach child in cur.children
 if (child.dist == -1)
 child.dist = cur.dist+1
 list.addEnd(child)

<u>0</u> A,B,<u>C</u> A,B,G,<u>H</u> A,B,G,<u>M</u> A,B,<u>G</u> A,B,<u>L</u> A,B,<u>O</u> A,B,<u>N</u> A,B,J A,B,E,<u>F</u> A,B,E,<u>K</u> A,B,<u>E</u> A,<u>B</u>

A D

Eulerian Cycle Problem

Seven Bridges of Königsberg

- Find a cycle that visits every edge exactly once

[Can you find the cycle?]

Euler Theorem

• A graph is **balanced** if for every vertex the number of incoming edges equals to the number of outgoing edges:

in(v)=out(v)

• **Theorem**: A connected graph is Eulerian if and only if each of its vertices is balanced.

Algorithm for Constructing an Eulerian Cycle

a. Start with an arbitrary vertex v and form an arbitrary cycle with unused edges until a dead end is reached. Since the graph is Eulerian this dead end is necessarily the starting point, i.e., vertex v.

(a)

Algorithm for Constructing an Eulerian Cycle (cont'd)

b. If cycle from (a) above is not an Eulerian cycle, it must contain a vertex w, which has untraversed edges. Perform step (a) again, using vertex w as the starting point. Once again, we will end up in the starting vertex W.

Algorithm for Constructing an Eulerian Cycle (cont'd)

c. Combine the cycles from (a) and (b) into a single cycle and iterate step (b).

Generally an exponential number of compatible sequences

- Value computed by application of the BEST theorem (Hutchinson, 1975)

$$\mathcal{W}(G,t) = (\det L) \left\{ \prod_{u \in V} (r_u - 1)! \right\} \left\{ \prod_{(u,v) \in E} a_{uv}! \right\}^{-1}$$

L = n x n matrix with r_u - a_{uu} along the diagonal and $-a_{uv}$ in entry uv
 $r_u = d^+(u) + l$ if $u = t$, or $d^+(u)$ otherwise
 a_{uv} = multiplicity of edge from u to v

Assembly Complexity of Prokaryotic Genomes using Short Reads. Kingsford C, Schatz MC, Pop M (2010) *BMC Bioinformatics*.

BFS and TSP

- BFS computes the shortest path between a pair of nodes in $O(|E|) = O(|N|^2)$
- What if we wanted to compute the shortest path visiting every node once?
 - Traveling Salesman Problem

Greedy Search

Greedy Search

Greedy Search

cur=graph.randNode()
while (!done)
next=cur.getNextClosest()

Greedy: ABDCA = 5+8+10+50=73Optimal: ACBDA = 5+11+10+12=38

Greedy finds the global optimum only when

- I. Greedy Choice: Local is correct without reconsideration
- 2. Optimal Substructure: Problem can be split into subproblems

Optimal Greedy: Making change with the fewest number of coins

TSP Complexity

- No fast solution
 - Knowing optimal tour through n cities doesn't seem to help much for n+1 cities

[How many possible tours for n cities?]

- Extensive searching is the only provably correct algorithm
 - Brute Force: O(n!)
 - ~20 cities max
 - 20! = 2.4×10^{18}

Branch-and-Bound

- Abort on suboptimal solutions as soon as possible
 - ADBECA = 1+2+2+2+3 = 10
 - ABDE = 4+2+30 > 10
 - ADE = |+30 > |0|
 - AED = 1+30 > 10

— …

- Performance Heuristic
 - Always gives the optimal answer
 - Doesn't always help performance, but often does
 - Current TSP record holder:
 - 85,900 cities
 - 85900! = 10^{386526}

[When not?]

TSP and **NP-complete**

- TSP is one of many extremely hard problems of the class NP-complete
 - Extensive searching is the only way to find an exact solution
 - Often have to settle for approx. solution

- WARNING: Many biological problems are in this class
 - Find a tour the visits every node once (Genome Assembly)
 - Find the smallest set of vertices covering the edges (Essential Genes)
 - Find the largest clique in the graph (Protein Complexes)
 - Find the highest mutual information encoding scheme (Neurobiology)
 - Find the best set of moves in tetris
 - ...
 - http://en.wikipedia.org/wiki/List_of_NP-complete_problems

Shortest Common Superstring

Given: $S = \{s_1, ..., s_n\}$

Problem: Find minimal length superstring of S

 $s_{1}, s_{2}, s_{3} = CACCCGGGTGCCACC \quad 15$ $s_{1} CACCC \qquad s_{1}, s_{3}, s_{2} = CACCCACCGGGTGC14$ $s_{2} CCGGGTGC \qquad s_{2}, s_{1}, s_{3} = CCGGGTGCACCCACC \quad 15$ $s_{3} CCACC \qquad s_{2}, s_{3}, s_{1} = CCGGGTGCCACCC \quad 13$ $s_{3}, s_{1}, s_{2} = CCACCCGGGTGC \quad 12$ $s_{3}, s_{2}, s_{3} = CCACCGGGTGCACCC \quad 15$

NP-Complete by reduction from VERTEX-COVER and later DIRECTED-HAMILTONIAN-PATH

Break

Milestones in Genome Assembly

Nature Vol. 265 February 24 1977

articles

Nucleotide sequence of bacteriophage $\Phi X174 DNA$

F. Sanger, G. M. Air^{*}, B. G. Barrell, N. L. Brown⁺, A. R. Coulson, J. C. Fiddes, C. A. Hutchison III^{*}, P. M. Slocombe⁴ & M. Smith^{*} MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB: 2011, UK

A DNA sequence for the genome of bacteriophage 0X114 of approximately. 5375 meterionic has been determined using the rapid and simple plan and minus method. The production of the proteins of the nine known genes of the production of the proteins of the nine known genes of the production of the proteins of the nine known genes of the proteins and RNAs. Two pairs of geness are colled by the proteins and RNAs into a plant reading frames.	strand DNA of DNA systems expresses as the mRNA and, in certain conditions, will bind ribosomes to that a protected fragment can be isolated and sequenced. Only one major site as found. By comparison with the animo acid sequence data is initiation of the gene G protection ¹² (positions 2,104–2,413). All this stage sequencing techniques using primed synthesis with DNA polymerase were being developed ¹⁴ and Sehotty and of the theorem binding site. ¹⁵ This was used to prime into part of the ribosome binding site. ¹⁵ This was used to prime into part of the ribosome binding site. ¹⁵ This was used to prime into part of the ribosome binding site. ¹⁵ This was used to prime into part of the ribosome binding site. ¹⁵ This was used to prime into part of the ribosome binding site. ¹⁵ This was used to prime into part of the ribosome binding site. ¹⁵ This was used to prime into part of the ribosome binding site. ¹⁵ This was used to prime into part of the ribosome binding site. ¹⁵ This was used to prime into part of the ribosome binding site. ¹⁵ This was used to prime into part of the ribosome binding site. ¹⁵ This was used to prime into part of the ribosome binding site. ¹⁵ This was used to prime into part of the ribosome binding site. ¹⁵ This was used to prime into part of the ribosome binding site. ¹⁵ This was used to prime into part of the ribosome binding site. ¹⁵ This was used to prime into part of the ribosome binding site. ¹⁵ This was used to prime into part of the ribosome binding site. ¹⁵ This was used to prime into part of the ribosome binding site. ¹⁵ This was used to prime into part of the ribosome binding site. ¹⁵ This was used to prime into part of the ribosome binding site. ¹⁵ This was used to prime into part of the ribosome binding site. ¹⁵ This was used to prime into part of the ribosome binding site. ¹⁵ This was used to prime into part of the ribosome binding site. ¹⁵ This was used to prime into part of the ribosome binding site. ¹⁵ This was used to prime into part of the riboso
The genome of bacteriophage Φ X174 is a single-stranded, circular DNA of approximately 5,400 nucleotides coding for nine known proteins. The order of these geness, a determined by genetic techniques ¹⁻¹ , is A-B-C-D-E-J-F-G-H. Genes F, G and H code for structural proteins of the virus capsid, and gene J (as defined by sequence work) codes for a small basic protein	the intercistronic region between the F and G genes, using DNA polymerase and "PF-labelled triphosphates". The ribo-substitu- tion technique" facilitated the sequence determination of the labelled DNA produced. This decanaciontide-primed system was also used to develop the push and minus method'. Suitable synthetic primers are, however, difficult to prepare and as DNA for the second system and the surface and as

1977. Sanger *et al.* Ist Complete Organism 5375 bp

2000. Myers *et al.* Ist Large WGS Assembly. Celera Assembler. 116 Mbp

1995. Fleischmann *et al.* 1st Free Living Organism TIGR Assembler. 1.8Mbp

1998. C.elegans SC Ist Multicellular Organism BAC-by-BAC Phrap. 97Mbp

2010. Li *et al.* Ist Large SGS Assembly. SOAPdenovo 2.2 Gbp

Like Dickens, we must computationally reconstruct a genome from short fragments

Assembly Applications

Novel genomes

• Metagenomes

- Sequencing assays
 - Structural variations
 - Transcript assembly

Assembling a Genome

2. Construct assembly graph from overlapping reads

...AGCCTAGACCTACAGGATGCGCGACACGT GGATGCGCGACACGTCGCATATCCGGT...

3. Simplify assembly graph

4. Detangle graph with long reads, mates, and other links

Why are genomes hard to assemble?

- **I.** Biological:
 - (Very) High ploidy, heterozygosity, repeat content

2. Sequencing:

- (Very) large genomes, imperfect sequencing

3. Computational:

- (Very) Large genomes, complex structure

4. Accuracy:

- (Very) Hard to assess correctness

Ingredients for a good assembly

High coverage is required

- Oversample the genome to ensure every base is sequenced with long overlaps between reads
- Biased coverage will also fragment assembly

Reads & mates must be longer than the repeats

- Short reads will have *false overlaps* forming hairball assembly graphs
- With long enough reads, assemble entire chromosomes into contigs

Errors obscure overlaps

- Reads are assembled by finding kmers shared in pair of reads
- High error rate requires very short seeds, increasing complexity and forming assembly hairballs

Current challenges in de novo plant genome sequencing and assembly Schatz MC, Witkowski, McCombie, WR (2012) *Genome Biology*. 12:243

Illumina Sequencing by Synthesis Adapter "" DNA fragment 1 Adapters Dense lawn of primers 1. Prepare Attached terminus Attached Free terminus terminus 2. Attach 3. Amplify Laser 4. Image 5. Basecall

Metzker (2010) Nature Reviews Genetics 11:31-46

http://www.illumina.com/documents/products/techspotlights/techspotlight_sequencing.pdf

Paired-end and Mate-pairs

Paired-end sequencing

- Read one end of the molecule, flip, and read the other end
- Generate pair of reads separated by up to 500bp with inward orientation

Mate-pair sequencing

- Circularize long molecules (1-10kbp), shear into fragments, & sequence
- Mate failures create short paired and reads

10kbp

Typical contig coverage

Imagine raindrops on a sidewalk

Histogram of balls in each bin Total balls: 1000 Empty bins: 361

Balls in Bins Ix

Histogram of balls in each bin Total balls: 2000 Empty bins: 142

Balls in Bins 2x

Histogram of balls in each bin Total balls: 3000 Empty bins: 49

Balls in Bins 3x

Histogram of balls in each bin Total balls: 4000 Empty bins: 17

Balls in Bins 4x

Histogram of balls in each bin Total balls: 5000 Empty bins: 7

Balls in Bins 5x

Histogram of balls in each bin Total balls: 6000 Empty bins: 3

Balls in Bins 6x

Histogram of balls in each bin Total balls: 7000 Empty bins: 2

Balls in Bins 7x

Histogram of balls in each bin Total balls: 8000 Empty bins: 1

Balls in Bins 8x

Coverage and Read Length

Idealized Lander-Waterman model

- Reads start at perfectly random positions
- Contig length is a function of coverage and read length
 - Short reads require much higher coverage to reach same expected contig length
- Need even high coverage for higher ploidy, sequencing errors, sequencing biases
 - Recommend 100x coverage

Assembly of Large Genomes using Second Generation Sequencing Schatz MC, Delcher AL, Salzberg SL (2010) *Genome Research*. 20:1165-1173.

de Bruijn Graph Construction

- $D_k = (V, E)$
 - V = All length-k subfragments (k < l)
 - E = Directed edges between consecutive subfragments
 - Nodes overlap by k-1 words

- Locally constructed graph reveals the global sequence structure
 - Overlaps between sequences implicitly computed

de Bruijn, 1946 Idury and Waterman, 1995 Pevzner, Tang, Waterman, 2001

de Bruijn Graph Assembly

de Bruijn Graph Assembly

Two Paradigms for Assembly

Short read assemblers

- Repeats depends on word length
- Read coherency, placements lost
- Robust to high coverage

Long read assemblers

- Repeats depends on read length
- Read coherency, placements kept
- Tangled by high coverage

Assembly of Large Genomes using Second Generation Sequencing Schatz MC, Delcher AL, Salzberg SL (2010) *Genome Research*. 20:1165-1173.

Overlap between two sequences

The assembler screens merges based on:

- length of overlap
- % identity in overlap region
- maximum overhang size.

Unitigging / Unipathing

- After simplification and correction, compress graph down to its non-branching initial contigs
 - Aka "unitigs", "unipaths"
 - Unitigs end because of (1) lack of coverage, (2) errors, and (3) repeats

Errors in the graph

Repeats and Read Length

- Explore the relationship between read length and contig N50 size
 - Idealized assembly of read lengths: 25, 35, 50, 100, 250, 500, 1000
 - Contig/Read length relationship depends on specific repeat composition

Assembly Complexity of Prokaryotic Genomes using Short Reads. Kingsford C, Schatz MC, Pop M (2010) *BMC Bioinformatics*. 11:21.

Repetitive regions

Repeat Type	Definition / Example	Prevalence
Low-complexity DNA / Microsatellites	$(b_1b_2b_k)^N$ where $I \le k \le 6$ CACACACACACACACACACACA	2%
SINEs (Short Interspersed Nuclear Elements)	<i>Alu</i> sequence (~280 bp) Mariner elements (~80 bp)	13%
LINEs (Long Interspersed Nuclear Elements)	~500 – 5,000 bp	21%
LTR (long terminal repeat) retrotransposons	Ту I -copia, Ту3-gypsy, Pao-BEL (~100 – 5,000 bp)	8%
Other DNA transposons		3%
Gene families & segmental duplications		4%

- Over 50% of mammalian genomes are repetitive
 - Large plant genomes tend to be even worse
 - Wheat: I6 Gbp; Pine: 24 Gbp

- If *n* reads are a uniform random sample of the genome of length *G*, we expect $k=n\Delta/G$ reads to start in a region of length Δ .
 - If we see many more reads than k (if the arrival rate is > A), it is likely to be a collapsed repeat
 - Requires an accurate genome size estimate

$$\Pr(X - copy) = \binom{n}{k} \left(\frac{X\Delta}{G}\right)^k \left(\frac{G - X\Delta}{G}\right)^{n-k} \qquad A(\Delta, k) = \ln\left(\frac{\Pr(1 - copy)}{\Pr(2 - copy)}\right) = \ln\left(\frac{\frac{(\Delta n/G)^k}{k!}e^{\frac{-\Delta n}{G}}}{\frac{(2\Delta n/G)^k}{k!}e^{\frac{-2\Delta n}{G}}}\right) = \frac{n\Delta}{G} - k\ln 2$$

Initial Scaffolding

Scaffold

Create a initial scaffold of unique unitigs (U-Unitigs) whose A-stat > 5. Also recruit borderline unitigs whose A-stat is > 2 and have consistent mates with the U-Unitigs.

Repeat Resolution

Scaffold

Place rocks (A-stat > 0 with multiple consistent mates), and stones (single mate and overlap path with placed objects) into the gaps. Pebbles, unitigs lackings mates, are no longer incorporated regardless of overlap qualities.

Derive Consensus Sequence

TAGATTACACAGATTACTGACTTGATGGCGTAA CTA

Derive multiple alignment from pairwise read alignments

Derive each consensus base by weighted voting

N50 size

Def: 50% of the genome is in contigs larger than N50


```
N50 size = 30 \text{ kbp}
```

```
(300k+100k+45k+45k+30k = 520k \ge 500kbp)
```

Note:

N50 values are only meaningful to compare when base genome size is the same in all cases

Assembly Algorithms

Assembly Validation

Automatically scan an assembly to locate misassembly signatures for further analysis and correction

Assembly-validation pipeline

- I. Evaluate Mate Pairs & Libraries
- 2. Evaluate Read Alignments
- 3. Evaluate Read Breakpoints
- 4. Analyze Depth of Coverage

Genome Assembly forensics: finding the elusive mis-assembly. Phillippy, AM, Schatz, MC, Pop, M. (2008) *Genome Biology* 9:R55.

Mate-Happiness: asmQC

• Excision: Skip reads between flanking repeats

C/E Statistic

- The presence of individual compressed or expanded mates is rare but expected.
- Do the inserts spanning a given position differ from the rest of the library?
 - Flag large differences as potential misassemblies
 - Even if each individual mate is "happy"
- Compute the statistic at all positions
 - (Local Mean Global Mean) / Scaling Factor
- Introduced by Jim Yorke's group at UMD

Forensics

Sampling the Genome

C/E-Statistic: Expansion

C/E-Statistic: Compression

6kb

Forensics

Hawkeye & AMOS: Visualizing and assessing the quality of genome assemblies Schatz, M.C. et al. (2011) Briefings in Bioinformatics. In Press.

Assembly Summary

Assembly quality depends on

- I. Coverage: low coverage is mathematically hopeless
- 2. Repeat composition: high repeat content is challenging
- 3. Read length: longer reads help resolve repeats
- 4. Error rate: errors reduce coverage, obscure true overlaps
- Assembly is a hierarchical, starting from individual reads, build high confidence contigs/unitigs, incorporate the mates to build scaffolds
 - Extensive error correction is the key to getting the best assembly possible from a given data set
- Watch out for collapsed repeats & other misassemblies
 - Globally/Locally reassemble data from scratch with better parameters & stitch the 2 assemblies together

Thank You

http://schatzlab.cshl.edu/teaching/ @mike_schatz